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Abstract. Atomistic-to-Continuum (AtC) coupling methods are a novel
means of computing the properties of a discrete crystal structure, such
as those containing defects, that combine the accuracy of an atomistic
(fully discrete) model with the efficiency of a continuum model. In this
note we extend the optimization-based AtC, formulated in [17] for linear,
one-dimensional problems to multi-dimensional settings and arbitrary in-
teratomic potentials. We conjecture optimal error estimates for the mul-
tidimensional AtC, outline an implementation procedure, and provide
numerical results to corroborate the conjecture for a 1D Lennard-Jones
system with next-nearest neighbor interactions.

1 Introduction

Solid materials have atomic configurations which are arranged as a crystalline
lattice, and the properties of these materials are derived from the underlying
structure of the lattice. Specifically, defects in the regular, repeating arrangement
of atoms such as a dislocation, or an extra plane of atoms, determine fundamental
mechanisms such as plastic slip. The presence of defects invalidate the central
hypotheses of continuum mechanics so models that recognize the discrete nature
of the material on the atomic scale must be used. Such methods can vary in their
complexity ranging from quantum mechanical models which incorporate nuclear
and electronic forces to empirical potential models that assume the existence of
a potential energy which is a function of the nuclear positions only. The latter
allows atoms to be considered as classical mechanical particles. Throughout this
note, we assume that the exact mathematical problem we wish to solve is that

? DO was supported by the Department of Defense (DoD) through the National De-
fense Science & Engineering Graduate Fellowship (NDSEG) Program. ML was sup-
ported in part by the NSF PIRE Grant OISE-0967140, DOE Award DE-SC0002085,
and AFOSR Award FA9550-12-1-0187. AS was supported in part by the DOE Award
DE-SC0002085 and AFOSR Award FA9550-12-1-0187.

?? Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.



II

of minimizing the global potential energy of a set of N atoms or, equivalently,
of equilibrating the internal and external forces on the atoms.

The outstanding issue with empirical atomistic models is the complexity
involved in their applications. In even the smallest problems of material interest
on the nanoscale, there will be at least 109 and up to 1015 atoms meaning the
number of degrees of freedom in an atomistic model is often far outside the scope
of any current computational feasibility. A novel attempt at solving this problem
has been to keep the atomistic model only in a small region near the defect, while
employing a continuum model such as elasticity in the bulk of the material away
from the defect. Continuum models are well understood and can numerically be
solved in an efficient manner using finite elements. In effect, the atomistic model
provides a constitutive relation near the defect where the constitutive relation
of the continuum model fails to hold.

These so called atomistic-to-continuum (AtC) coupling methods have seen a
surge of interest in the last two decades, especially with the introduction of the
quasicontinuum method in [19]. The problem introduced in these AtC methods is
how to combine, or couple, the two different models. An informal way of carrying
this out is to divide the computational domain, say Ω, into an atomistic region,
Ωa, and a continuum region, Ωc. Then, a global hybrid energy or hybrid force
field is constructed from the atomistic and continuum models on Ωa and Ωc.
The resulting hybrid energy is then minimized, or alternatively, the internal and
external forces are equilibrated to find the equilibrium configuration of Ω.

In this note we continue the development of the optimization-based AtC
approach commenced in [17]. The core idea is to pose independent atomistic
and continuum subproblems on overlapping domains Ωa and Ωc and then couple
the models by minimizing an objective functional, which measures the difference
between the strains of the atomistic and continuum states on Ωa∩Ωc. In so doing,
our approach combines ideas from blending AtC methods [12, 2, 4, 11, 3, 13, 15]
with the optimization-based domain-decomposition approach for PDEs in [10,9].

The resulting optimization-based AtC method differs substantially from cur-
rent energy or force-based methods, and to the best of our knowledge [17] is the
first instance of using an objective functional of this form to effect atomistic-
to-continuum coupling. Conceptually, our AtC approach is similar to the het-
erogeneous domain decomposition method for PDEs developed in [6] with the
important distinction that we couple two fundamentally different material mod-
els rather than PDEs.

The main focus of this note is on the formulation of an optimization-based
AtC method for modeling material defects in two and three dimensions, while
allowing for arbitrary many-body terms in the potential energy. Sect. 2 quotes
the necessary background results and Sect. 3 presents the formulation of the
method. Solution of the optimization problem is discussed in Sect. 4. We conjec-
ture error estimates and derive optimal parameters for our algorithm from the
complexity analysis of Sect. 5. Finally, Sect. 6 provides numerical evidence in
support of these conjectures.
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2 Preliminaries

We consider the problem of modeling a crystal occupying the infinite domain,
Rd, and take the reference configuration of the atoms to be the integer lattice,
Zd, deformed by the macroscopic deformation gradient F. Deformations of the
material are thus described by functions y : FZd → Rd. For any deformed con-
figuration, y, of the lattice, we assume the energy due to electronic and nuclear
interactions can be described by an empirical site potential Vξ(y) where Vξ rep-
resents the energy attributable to atom ξ ∈ Zd. As usual, we further assume that
each ξ interacts with only a finite number of other atoms. The set of atoms that
ξ interacts with is given by ξ+R ⊂ Zd where R is the interaction neighborhood.
The interaction neighborhood can be defined through a cutoff radius, rcut, so
that

R =
{
ξ ∈ Zd | 0 < |Fξ| ≤ rcut

}
.

Fig. 1 depicts R in 2D where F is the identity and rcut = 2. We model point

ξ

r1−r1

Fig. 1. An atom site ξ and its interaction range R.

defects in the lattice by allowing Vξ to depend on ξ while assuming that Vξ = V
when ξ is far from a defect. An evident example is an impurity where atoms of
a different species have different interaction laws with the bulk atoms, but these
interactions are only limited to small neighborhoods of defect (impure) atoms.

The presence of defects in the lattice generates elastic fields causing the atoms
to relax. The deformed configurations are generically given by

y(ξ) = Fξ + u(ξ),

where u : Zd → Rd is the displacement field. The energy of the deformed config-
uration associated to this displacement field is

E(u) :=
∑
ξ∈Zd

Vξ(Du(ξ)) (2.1)
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whereDu(ξ) := (Dρu(ξ))ρ∈R is a collection of finite differences of u andDρu(ξ) :=
u(ξ + ρ) − u(ξ) defines the finite difference operator. We note that Vξ implic-
itly depends on the macroscopic deformation gradient F. Furthermore, without
loss of generality, we assume that Vξ(0) = 0 so that the infinite sum in E(u)
is well-defined. For example, in the case of a Lennard-Jones potential, φ, with
next-nearest neighbor interactions in 1D, we can define

Vξ(Du(ξ)) = φ(F +D1u) + φ(2F +D1u−D−1u)− (φ(F) + φ(2F))

where φ(F) +φ(2F) is subtracted from the usual Lennard-Jones potential (with-
out affecting the computed forces) so that Vξ(0) = 0.

The problem we seek to solve is then

ū ∈ arg min
u∈U

E(u), (2.2)

where arg min denotes the set of local minima of a functional and the admissible
displacement space is taken to be U =

{
u : Zd → Rd

}
. Typically, this energy

on an infinite domain is approximated by truncating to a finite domain (the
approach taken here) or by imposing periodic boundary conditions. However, the
complexity involved in computing the resulting energy may be intractable for
current computing capabilities due to the large number of atoms and interactions
so a more efficient stratagem is required.

One solution approach would be to use continuum hyperelasticity models, but
the elastic fields involved in modeling defects such as dislocations are singular at
the defect core and so do not belong to the function spaces required in a standard
continuum formulation. Atomistic-to-continuum models seek to overcome these
deficiencies by utilizing both models simultaneously: the atomistic model near
the defect and the continuum model far from the defect.

3 An AtC Method Formulation

3.1 Decomposition into atomistic and continuum subdomains

Typical AtC methods require the decomposition of the computational domain
Ω into atomistic and continuum subdomains, Ωa and Ωc, respectively, with a
possible blending, or overlap, region Ωo := Ωa ∩Ωc. The goal of these methods
is to create a globally defined hybrid energy or force field derived from using the
atomistic model in Ωa, the continuum model in Ωc, and some coupling of the
two in Ωo. The distinguishing feature of our algorithm is to pose the atomistic
and continuum problems independently on overlapping domains and then couple
them by minimizing a suitably defined norm of the difference between the sep-
arate atomistic and continuum states that exist simultaneously on the overlap
region. As we shall see, some care must be taken in the definitions of Ωa and Ωc

to account for the interaction range, R, from the previous section.
Truncation of the infinite domain, Rd, to a finite, regular polygonal domain,

Ω, inscribed in a sphere of radius Rc, is the first approximation in modeling (2.2).
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The boundary of Ω coincides with FZd, and the lattice corresponding to Ω
is defined as L := Ω ∩ FZd. Consequently, we denote the space of admissible
displacements which satisfy the far-field boundary condition u(ξ) = 0 whenever
ξ /∈ L by

U0 := {u ∈ U |u(ξ) = 0 ∀ ξ /∈ L}
and replace (2.2) by

ū ∈ arg min
u∈U0

E(u). (3.1)

Remark 1. Though we have derived (3.1) with the idea of approximating an in-
finite domain containing a defect, a second problem of practical interest is mini-
mizing an energy E on a fixed domain, Ω, subject to some prescribed boundary
conditions on ∂Ω and an imposed external force in Ω. In this case, we typically
separate Vξ into an internal site energy V int

ξ and an external site energy V ext
ξ .

Aside from this notational convenience, the formulation of our AtC method is
identical for both of these problems.

Remark 2. For any domain, Ωt ⊂ Rd, (t = a, c, o, etc.) we define its (outer)
radius, Rt := 1

2diam(Ωt), and its associated discrete lattice, Lt = Ωt ∩ FZd.

We further decompose Ω into overlapping atomistic and continuum subdomains,
Ωa and Ωc, as follows. Let Ωa ⊂ Ω be a regular polytope of radius Ra with
Ra � Rc, and take Ωcore to be another regular polytope of radius Rcore < Ra.
The continuum subdomain is defined by Ωc := Ω\Ω◦core. This decomposition
results in an annular overlap region Ωo := Ωa ∩ Ωc with width Ra − Rcore. See
Fig. 2 for an illustration in 2D. The atomistic interior of Ωa, denoted by Ω◦a , is

€ 

Ωc

€ 

Ωa

€ 

Ωcore

Fig. 2. Decomposition of Ω into atomistic and continuum subdomains.

the set of atoms ξ ∈ Ωa such that all neighbors of ξ are also in Ωa. Thus

Ω◦a := {ξ ∈ Ωa | ξ +R ⊂ Ωa} and Ω◦◦a := {ξ ∈ Ω◦a | ξ +R ⊂ Ω◦a}, (3.2)
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where Ω◦◦a can be interpreted as the atomistic interior of Ω◦a .
For these domains, we define the associated displacement spaces

Ua := {u : La → Rn} and Ua
0 := {u ∈ Ua |u = 0 outside Ω◦◦a }.

The energy on these spaces is

Ea(u) :=
∑
ξ∈L◦◦a

Vξ(Du(ξ)), (3.3)

where L◦◦a := Ω◦◦a ∩ L. The problem of finding local minima of this energy in
the space Ua subject to some prescribed boundary values on La\L◦◦a is exactly
what has been described as the atomistic model on Ωa.

Remark 3. As previously mentioned, some care must be exercised in defining
Ωa and Ωc. Precisely, we must impose the requirement that Ωcore ⊂ Ω◦◦a . This
ensures that the overlap width is at least twice the size of the interaction range;
a necessary condition is Ra −Rcore ≥ 2rcut.

Our next task is to define a continuum model on Ωc which is accomplished
by defining the Cauchy-Born continuum energy there. We momentarily assume
a finite element triangulation, Th, is given in Ωc. This triangulation will be
explicitly constructed in Sect. 5. Piecewise linear continuous finite elements are
employed, and the mesh is fully refined in Ωo so that a finite element node
exists at each ξ ∈ Lo. We denote the space of finite elements as Uc while the
subspace of Uc satisfying homogeneous Dirichlet boundary conditions on the
“outer” boundary of Ωc is

Uc
0 := {u ∈ Uc |u = 0 on ∂Ωc\∂Ωcore} .

The Cauchy-Born continuum approximation on Ωc is then

Ec(u) :=

∫
Ωc

W (∇u) dx, (3.4)

where the Cauchy-Born strain energy density functional isW (G) := V (FR+GR).
This energy is evaluated at elements of the space Uc

0 so that we may write the
continuum energy as

Ec(u) =
∑
T∈Th

|T | ·W (∇u|T ), (3.5)

and the continuum model consists of finding local minima in Uc of this functional
subject to prescribed boundary conditions on ∂Ωc.3

3 In both the atomistic and continuum model, we have referenced some unknown,
prescribed boundary values. These can be interpreted as virtual controls as defined
in [7] and discussed in [17].
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3.2 Coupling

Having decomposed the computational domain into atomistic and continuum
constituencies, we need to provide the mechanism by which these two models
are coupled together. This is done by minimizing the energy norm difference
between atomistic and continuum states resulting from the atomistic and con-
tinuum problems from the spaces Ua and Uc. Since an atomistic state, ua ∈ Ua,
is a discrete function defined on a lattice, whereas a continuum state, uc ∈ Uc, is
a continuous function, we define a continuous, piecewise linear nodal interpolant
of ua on Th restricted to Ωo by Iua, which allows us to compare the atomistic
and continuum states in the same function space on Ωo.

Our AtC method is to then solve the constrained minimization problem

find (ūa, ūc) such that ‖∇Iua −∇uc‖L2(Ωo) is minimized

subject to

{ 〈δEa(ua), va〉 = 0 ∀va ∈ Ua
0

〈δEc(uc), vc〉 = 0 ∀vc ∈ Uc
0

and

∫
Ωo

(Iua − uc) dx = 0
(3.6)

The objective in (3.6) ensures that the mismatch between ūa and ūc over Ωo

is as small as possible. The first two constraints in (3.6) imply that ūa and ūc

are equilibria of the atomistic and continuum subproblems defined on Ωa and
Ωc. The third constraint is necessary because the objective is a difference of two
gradients, and without it the optimal solution would be determined only up to
an arbitrary constant4. Finally, we define our AtC approximation by

ūatc(x) =

{
ūa(x), |x| ≤ Ra,

ūc(x), |x| > Ra.
(3.7)

4 Solution of the AtC optimization problem

The AtC formulation (3.6) is a constrained optimization problem. A standard
solution approach for such problems is to recast them into unconstrained op-
timization problems through the Lagrange multiplier method. Setting the first
variations of the resulting Lagrangian with respect to the states and the adjoints
to zero yields an optimality system from which we can determine the optimal so-
lution of the original problem. This approach is know as a “one-shot method” [8]
because we solve simultaneously for the states, adjoints, and controls.

For the AtC formulation (3.6), we introduce the Lagrange multipliers (adjoint
variables) λa ∈ Ua

0 and λc ∈ Uc
0 for the first two constraints, the multiplier η ∈ R

for the third constraint, and the Lagrangian functional

Ψ(ua, uc, λa, λc, η) =
1

2
‖∇Iua −∇uc‖2L2(Ωo)

−〈δEa(ua), λa〉 − 〈δEc(uc), λc〉 − η
∫
Ωo

(Iua − uc) dx.
(4.1)

4 In one dimension, or when there are multiple overlap regions associated with mod-
eling multiple defects, a constraint is specified for each individual overlap region.
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Setting the first-variations of the Lagrangian to zero yields the optimality system

find ua, uc, λa, λc, and η such that ∇Ψ(ua, uc, λa, λc, η) = 0, (4.2)

where

∇Ψ =

(
∂Ψ

∂ua
,
∂Ψ

∂uc
,
∂Ψ

∂λa
,
∂Ψ

∂λc
,
∂Ψ

∂η

)T
(4.3)

is the Jacobian5 of Ψ . The first-order necessary conditions (4.2) are a nonlin-
ear system of equations for the unknowns ua, uc, λa, λc, and η. To solve this
system, we employ Newton linearization. Specifically, for a given initial guess
z = [ua, uc, λa, λc, η]T we solve the linear equation

∇2Ψ(z)x = −∇Ψ(z) (4.4)

for the Newton increment x and set the new iterate to z = z + x.
It is not difficult to see that the Hessian ∇2Ψ(z) has the form

∇2Ψ =



∂2Ψ
∂(ua)2

∂2Ψ
∂uc∂ua

∂2Ψ
∂λa∂ua 0 ∂2Ψ

∂η∂ua

∂2Ψ
∂ua∂uc

∂2Ψ
∂(uc)2 0 ∂2Ψ

∂λc∂uc
∂2Ψ
∂η∂uc

∂2Ψ
∂ua∂λa

0 0 0 0

0 ∂2Ψ
∂uc∂λc

0 0 0

∂2Ψ
∂ua∂η

∂2Ψ
∂uc∂η 0 0 0


=:

(
A BT

B 0

)
, (4.5)

and so, (4.4) has the typical structure of a saddle-point problem.

5 Formal Error and Complexity Analysis

We measure the error in the energy (semi-)norm, ‖Dūatc−Dū‖2ell2(L). Typically,

the error has several contributions: (1) the error of truncating the infinite do-
main, (2) the error of modeling the atomistic interaction with the continuum
interaction on a finite element mesh, and (3) an error from coupling the two
models. The first error is expected to be ‖Du‖`2(Zd\L). For P1 (i.e., piecewise
linear) elements, the second error is expected to be ‖hD2ū‖`2(Lc), where h is the
element size and D2u := (DρDσu)ρ,σ∈R. The third error is usually dominated by
the second. For rigorous establishments of similar error estimates, see [14,18,5].
In this note, we conjecture the following result,

Conjecture 1.

‖Dūatc −Dū‖2`2(L) . ‖Dū‖2`2(Zd\L) + ‖hD2ū‖2`2(Lc) =: err2, (5.1)

where X . Y indicates that X is less than or equal to Y up to a multiplicative
constant (i.e., that ∃ c > 0 such that X ≤ cY ).

We note that this is the most “optimistic” conjecture and includes only the error
contributions (1) and (2) that cannot be avoided.

5 The notation ∂Ψ
∂ua is used to represent the vector ∂Ψ

∂ua
ξ

for ξ ∈ La with analogous

definitions for the remaining components.
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Optimal Approximation Parameters

A defect can be characterized by a far-field decay rate, γ > 0, of the elastic
displacement or stress fields. That is, we assume that |Dkū(ξ)| ∼ |ξ|1−k−γ (typ-
ically, γ = d for a point defect and γ = 1 for a dislocation [16, 5]). We further
assume a finite element discretization, Th, with nodes in Lc and with a radial
mesh size function h(x) := diam(T ) for x ∈ T , which will be chosen to formally
optimize the error bound in (5.1) subject to a fixed number of degrees of free-
dom. We fully resolve the mesh in Ωo so that each element of Lo is taken as a
node. The number of remaining degrees of freedom is then given by

#DoF =
∑
T∈Th

T∩Ωo=∅

1 =
∑
T∈Th

T∩Ωo=∅

|T |
|T | h

∫ Rc

Ra

1

h̃d
rd−1 dr,

where h̃(|x|) h h(x) is a mesh size function that depends only on |x| and X h Y
indicates that X and Y are equal up to a multiplicative constant.

Recalling that |Dkū(ξ)| ∼ |ξ|1−k−γ , we thus carry out the optimization prob-
lem:

minimize

∫ Rc

Ra

h̃2r−2−2γrd−1 dr +

∫ ∞
Rc

r−2γrd−1 dr

subject to

{
#DoF =

∫ Rc

Ra

1
h̃d
rd−1 dr = C,

h̃(Ra) = 1

with respect to h̃ = h̃(r) and Rc. Notice that we optimize only a part of the error

bound, since the remaining contribution ‖hD2ū‖`2(Lo) h
∫ Ra

Rcore
h̃2r−2−2γrd−1 dr

cannot be optimized after we have fixed the mesh in Ωo.
Introducing Lagrange multipliers and taking the variation with respect to

h̃ we obtain h̃(|x|) = c|x|
1+γ

1+d/2 for some constant c, and the second constraint,

h̃(Ra) = 1, can then be used to see that h(x) = h̃(|x|) = (|x|/Ra)
1+γ

1+d/2 (re-
fer to [1] for a related example of mesh optimization for ODEs). Likewise, by
differentiating with respect to Rc and using the expression for h̃ we find that

Rc h R
1+γ
γ−d/2
a , provided 2γ − d > 0. Finally, from the stability condition derived

in [17], we should choose Ra h Rcore.
Since the number of degrees of freedom is

DoF h Rda +

∫ Rc

Ra

(
(r/Ra)

1+γ
1+d/2

)−d
rd−1dr h Rda, (5.2)

we have
err2 h (DoF)

−2−2γ+d
d . (5.3)

Remark 4 (Uniform norm). A more involved derivation can be used to optimize
the parameters for the conjecture ‖Dūatc−Dū‖`∞(L) . errinf, where the errors
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in (5.1) are now measured in the infinity norm. In this case, we would get

h(x) =

( |x|
Ra

)1+γ

, Rc h R
1+ 1

γ
a , errinf h (DoF)

− 1+γ
d .

For a dislocation (i.e., for γ = 1 and d = 2, cf. [5]), the energy norm is infi-
nite so optimizing approximation parameters for err is ill-posed. Nevertheless,
optimizing errinf is well-posed.

6 Numerical Experiments

In this section we report the results of numerical experiments conducted in 1D
(d = 1) using a next-nearest neighbor Lennard-Jones model as the underlying
atomistic model. These experiments are analogous to those run for various, pop-
ular AtC methods in [14], with the exception that the atomistic model chosen
there was the Embedded Atom Method. Numerical experiments for the blended
energy and blended force-based quasicontinuum methods using optimal approx-
imation parameters have been presented in [15,13]. Our results provide evidence
in support of the estimates conjectured in Sect. 5. We will also show how to in-
corporate external forces into the model as alluded to in Remark 1. We consider
the exact, atomistic energy on the infinite lattice, Z, to be

Ea(u) =
∑
ξ∈Z

φ(1+D1u(ξ))+φ(2+D1u(ξ)−D−1u(ξ))−(φ(1)−φ(2))−f(ξ)u(ξ),

where f(ξ) is an external force at ξ. The Cauchy-Born continuum energy is

Ec(u) =

∫
R

W (∇u) dx−
∫

(If)u dx, where W (G) = φ(1 + G) + φ(2 + 2G),

and If is the continuous linear interpolant of the force. We assume the exact
atomistic solution that we wish to approximate is (as in [14])

ūa
ξ =

1

10

(
1 + ξ2

)−γ/2
ξ.

Given this solution, we compute the external forces on an atom ξ to ensure that
ūa is indeed a minimizer of the global atomistic energy. These forces are

fξ = −∂E
a(u)

∂uξ

∣∣
u=ūa .

This implies the Lagrangian from Sect. 4 is

Ψ(ua, uc, λa, λc, η) =
1

2
‖∇Iua −∇uc‖2L2(Ωo) + 〈δEa(ua), λa〉

+ 〈δEc(uc), λc〉+ η1

∫
Ωo∩R+

(Iua − uc) dx+ η2

∫
Ωo∩R−

(Iua − uc) dx
(6.1)
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where we use the continuous, piecewise linear interpolant of ua in this formu-
lation. (Recall also the need for two Lagrange multipliers to enforce the mean
value zero condition on the disconnected overlap region in one dimension.)

We select a value of Rcore from a range of interest, choose the mesh according
to the formal analysis from Sect. 5, and assign the rest of the approximation
parameters via the formal derivations of Sect. 5. Namely, we set Ra = 2Rcore

and recursively construct the nodes, Nh, of the triangulation, Th, as follows.
First, each ξ ∈ BRa

(0) is chosen as a node. Set ξ = maxζ∈Nh ζ, and sequentially

add a new node at ± [ξ + h(ξ)] where h(ξ) := b(ξ/Ra)
1+γ

1+d/2 c. This is continued
until h(ξ) ≈ ξ, at which point we add two final nodes at ±RC .

Finally, we take the “defect” approximation parameter to be γ := 3/2 and
employ our optimization-based AtC algorithm to compute uatc for the range of
values Rcore ∈ {10, 20, 40, 80, 160}. According to our estimate (5.3) in Sect. 5,
we expect the error to decay as err2 h DoF−2. We have plotted the error involved
in each of these approximations versus the number of degrees of freedom in Fig. 3.
In particular, the error behaves like (DoFs)−2, which is truly optimal in the sense
of AtC methods because this is the rate of the continuum model. In other words,
the error of coupling atomistic and continuum models is dominated by the far
field error and the continuum modeling error, as assumed in Conjecture 1.

10
2

10
3

10
−6

10
−5

10
−4

10
−3

Number of Nodes in Mesh

||D
uat

c −
D

ua || L2

 

 
AtC Error

DoF−2

Fig. 3. Error of AtC approximation plotted against number of degrees of freedom.

7 Conclusion

We have formulated a new optimization-based AtC method for arbitrary inter-
atomic potentials in multiple dimensions. Numerical simulations using a next-
nearest neighbor Lennard-Jones atomistic model confirm a conjecture that the
coupling error is dominated by the modeling and the domain truncation errors,
i.e., that our AtC method behaves in an optimal fashion.
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